Saturday 28 November 2015

A Momentous Moment in Time

As I’m sure you’re aware, in a few days time the United Nations Framework Convention on Climate Change (UNFCCC) will meet for the twenty-first session of the Conference of Parties (COP21). Over 190 nations will gather in Paris to discuss a collective agreement on climate change, with the aim of staying within the 2oC global warming target.  
                                            
Despite a GlobeScan poll on behalf of the BBC suggesting that public support for a global deal on climate change has declined, I hope that the outcome will reignite general public conversation and support. It’s important that everyone gets on board with this, as the conference will not only address CO2 emissions, but also how business is conducted in terms of production and farming. Collectively, consumers can have a lot of power which needs to be utilised.

It’s likely there’s also going to be something else quite momentous going on at the same time as the COP21 summit... the peak of the 2015 El Niño event.

The scatter plot (Figure 1) and Table 1 below were produced by the International Research Institute for Climate and Society (IRI), showing forecasts made by a variety of dynamical and statistical models for Sea Surface Temperature (SST) in the Nino 3.4 region (120-170W, 5N-5S) for nine overlapping 3-month periods using observations taken in October 2015.

Figure 1: Niño 3.4 SST Anomaly (oC) predictions from dynamical and statistical models for Nov 2015.
Source: InternationalResearch Institute

As can be seen, for all models, the highest point lies in the Nov(15) – Dec(15) – Jan(16) period. The differences between the model predictions are the result of two main factors. The first, and most obviously, being the construction of the model. Models are not able to fully capture an entire process, they are tools enabling us to analyse, predict, and learn about a process, and hence there will always be a degree of uncertainty within them. The second reason for differences is the actual uncertainty in the forecast. Forecasts made between June and December generally have a better skill* due to the reasoning that this is when El Niño events are active. As might also be expected, skills usually decrease as lead time increases.  
*A forecast “skill” is the level of accuracy a model forecasts in comparison to a reference model.

The figures in Table 1 below give average SST values for the different model types, supporting the trends seen in the scatter plot. 

Table 1: Average Niño 3.4 SST Anomaly (oC) for given models over seasonal 3 month periods in 2015 – 2016.
Source: InternationalResearch Institute

Most of the models predict El Niño SST to slightly increase in strength until about the end of the year, and then gradually weaken through 2016. Although the El Niño will be steadily dying away, it is expected to still be a strong force through the first 4 or so months of 2016. The associated probabilities with these predictions is at least 99% up to around Feb 16, then exponentially falls away to about 50% by May – July 16.

Figure 2 below shows a longer term trend of model predictions, emphasising the strength of the El Niño which we are currently experiencing. It also shows the model forecasts for the past 21 months in addition to the Nov 2015 predictions (as seen in Figure 1). It allows us to see the evolution of model predictions as more data is gathered from the progressing conditions. Models are continually updated and re-run when new data is obtained to produce up-to-date forecasts and analysis of the processes at play.


Figure 2: Niño 3.4 SST Anomaly (oC) predictions from dynamical and statistical models for 22 months.
Source: InternationalResearch Institute

The high SST anomalies that are being seen mean that the ocean is unable to absorb as much heat as it otherwise would during these months. This factor along with CO2 levels breaking records and reaching a massive 400.35ppmis what is causing the expectation that 2015 will be the hottest year on record.

Join me next time when we’ll look at what dynamical models and statistical models are, the differences between them, and why these different types of models exist for the modelling of ENSO.



2 comments:

  1. The different forecasts of the models are really interesting! I will definitely be checking back to find out more.

    ReplyDelete